GenWrapper: A Generic Wrapper for Running Legacy Applications on Desktop
Grids

Attila Csaba Marosi, Zoltan Balaton, Péter Kacsuk

MTA SZTAKI Computer and Automation Research Institute of
Hungarian Academy of Sciences H-1528 Budapest, P.O.Box 63, Hungary
{atisu,balaton kacsuk } @sztaki.hu

Abstract

Desktop Grids represent an alternative trend in Grid
computing using the same software infrastructure as Volun-
teer Computing projects, such as BOINC. Applications to
be deployed on a BOINC infrastructure need special prepa-
rations. However, there are many legacy applications, that
have either no source code available or would require too
much effort to port. For these applications BOINC provides
a wrapper. This wrapper can handle the simple cases and
it is configurable, but it can only be used to execute a list of
legacy executables (tasks) one after the other. GenWrapper
aims to provide a generic solution for wrapping and exe-
cuting an arbitrary set of legacy applications by utilizing
a POSIX like shell scripting environment to describe how
the application is to be run and how the work unit should
be processed. This is realized by an extended version of
BusyBox providing the most common UNIX commands and
a POSIX shell interpreter in a single executable with a spe-
cial applet (BusyBox extension) to make BOINC API func-
tions accessible from the shell on Windows, Linux and Mac
OS X platforms. In this paper we present how GenWrapper
works and how it can be used to port legacy applications to
Desktop Grid systems.

1. Introduction

Desktop Grids (DGs, a branch of Grid computing) are
strongly related to Volunteer Computing and are utilizing
the same software infrastructure, unlike conventional Ser-
vice Grids, which are typically built on a complex mid-
dleware. As a consequence, installation and maintenance
of DG resources (i.e. machines donating resources to the
grid) is extremely simple, requiring no special expertise
thus, DGs are able to utilize non-dedicated machines. This
means that, large number of donors can easily contribute

to the pool of shared resources as in Volunteer Computing
projects. Unlike Service Grids though, Volunteer Comput-
ing projects usually serve only a very limited user com-
munity (or target applications) who are able to use the
resources for computation. The common architecture of
Desktop Grids and Volunteer Computing systems typically
consists of one or more central servers and (typically large
number of) clients that connect to them time to time. The
central servers provide the applications and their input data
in form of work units (WUs, i.e. conveniently sized chunks
of computation to keep clients busy between contacting the
server). Clients can join voluntarily, offering to download
and run WUs of an application with a set of input data.
When the computation has finished, the client uploads the
results to the server where the master part of the application
assembles the final output from the partial results returned
by clients.

Desktop Grids may be deployed locally within an insti-
tution gathering local computing resources (Local Desktop
Grid or LDG which is a different goal than Volunteer Com-
puting projects have) or like Volunteer Computing systems
gathering resources from the general public (Public Desk-
top Grid, PDG). One of the most popular software infras-
tructures is BOINC[1] which aims to provide an open in-
frastructure for Volunteer Computing Projects and Public
Desktop Grids. SZTAKI Desktop Grid[7], which is based
on BOINC aims to provide enhancements to fulfill the needs
of Desktop Grids including LDGs and to allow more users
to access the DG resources.

Any application to be deployed on a BOINC infrastruc-
ture needs special preparations. However, there are many so
called legacy applications, that have either no source code
available to modify or simply would require to much effort
to port. For these applications BOINC provides a wrap-
per which can be used to handle the communication with
the Core Client, while executing the legacy application as a
subprocess. This wrapper can handle the simple cases but

it is not very flexible. It is configurable, but it can only be
used to execute a list of legacy executables (tasks) one after
the other. This is because the XML file it uses only allows
describing the order of execution of the binaries. To make
the wrapper more flexible this configuration file could be
extended with new features to provide a required level of
flexibility each time a shortcoming is discovered, but ulti-
mately a general solution would require a generic scripting
language for describing all possible configuration options.

Realizing this, our GenWrapper aims to provide a
generic solution for wrapping and executing an arbitrary
set of legacy applications by utilizing a POSIX like shell
scripting environment to describe how the application is to
be run and how the work unit should be processed. This
choice provides great flexibility and a powerful tool to port
more legacy applications to Desktop Grids with very little
effort. The GenWrapper consists of an extended version
of BusyBox[8], a single binary providing essential UNIX
commands(such as sed, grep, unzip, tar, awk, etc.) and
a POSIX shell interpreter (based on ash). GenWrapper is
ported to run on Windows, Linux and Mac OS X platforms
and it is extended to make BOINC API functions acces-
sible from the shell (e.g. boinc resolve_filename or boinc
fraction_done). In the following sections we present how
GenWrapper works and how it can be used to port legacy
applications to Desktop Grid systems.

2. Applications under BOINC

Volunteers are joining the DG by installing and run-
ning the BOINC Core Client and attaching to one or more
projects. Besides handling communication with the project
servers, the Core Client is responsible for: 1) starting, stop-
ping, suspending and resuming the application; ii) enforc-
ing resource limits and resource shares between different
projects set by the user; iii) instructing the application to
checkpoint itself and iv) accepting various statistics re-
ported by the application (its completion percentage, used
CPU time).

To use the distributed resources gathered by BOINC, the
application performing the computation also needs some
preparation to be able run on the client machines under the
control of the Core Client. Apart from having executables
for all possible platforms that are member of the DG, the
application also has to be prepared to be run by the BOINC
Core Client which has two main aspects: i) it should be able
to run in the directory structure used by the client, i.e. appli-
cation executables are placed in the project directory while
the working directory is a separate slot directory where in-
put and output files are linked; ii) it should be able to inter-
act with the Core Client, i.e. handle suspend, resume and
quit requests and report used CPU time and checkpoints.

BOINC provides an API that applications should use to

communicate with the Core Client and handle running in
the DG environment. This API provides functions for re-
solving links to files that are accessed from the slot direc-
tory, communicate exit status to the Core Client so it can
handle errors and report statistics as needed.

Wrapper Application

boinc_init()
exec app1

BOINC Core Client

Aeaqy
U3l ONIOE

exec appN g
boinc_finish() _:

3+ > Legacy application 1. |«

[Input file 1.

| Input file n. Jf‘ = -|l> Legacy application n.

Work unit

Application

Figure 1. Legacy application using the BOINC
Wrapper

Legacy applications or applications which cannot be
modified to use the API are not able to run under BOINC
because without calling the right API functions they would
find links instead of their input files, write their outputs to
the wrong place and without properly reporting statistics
to the Core Client the application would be restarted over
and over and eventually it would be marked as failed. For
these applications BOINC offers the BOINC Wrapper (see
Figure 1) which acts as a main program managing commu-
nication with the Core Client calling the appropriate API
functions and running the real application executable as a
subprocess. An application using the BOINC Wrapper con-
tains the wrapper executable besides the application files.

3. Applications with GenWrapper

A typical GenWrapper application consists of a zip file
holding all the files belonging to legacy application(s), the
two GenWrapper components: GitBox and Launcher ex-
ecutables and a profile script to perform platform spe-
cific preparations. A typical work unit for a GenWrapper
wrapped application contains the input files and another
shell script (the work unit shell script), which allows to con-
trol and execute the legacy applications in an arbitrary man-
ner for each work unit. The work unit shell script should be
platform independent as the work unit can be executed by
any supported platform.

GitBox is a stripped-down Windows only port of Busy-
Box originally created for the Windows version of the git [9]
version control system which internally relies on running
shell scripts. Although GIT on Windows later abandoned
GitBox, this port was used as the basis for GenWrapper af-

: perform_arbitrary_action

Launch

BOINC Core Client <-f—» @ |- AR,

_ © | boinc_init() :
E CZ’ gunzipfapplication() et CEEE!
D o -fgenerate_starter_ script() : !
Generated starter shell script [<]” < S start_gitbox() "
,-—-—--—-—----—---—----—--—-—--—-—I\ : H) I
 source profile_script N 2 [boinc_finish() :
- exec work_unit_script ™ !

GitBox

Profile shell script |

: exec app1
. boinc fraction_done 0.5
: perform_arbitrary_action
: exec appN
: boinc fraction_done 1

: perform_arbitrary_action

' boinc resolve_filename out

-_

| Input file 1.

| Input file n.

Work unit

¥

Legacy application 1. |

Legacy applicationn. |

Application zip

Figure 2. Legacy application using GenWrapper

ter extracting it from GIT and porting back to UNIX pre-
serving functionality on Windows. Later the GenWrapper
GitBox version was updated to match newer BusyBox re-
leases, and thus diverged from the original GitBox signifi-
cantly, although it is still referred to as GitBox in the Gen-
Wrapper distribution for historical reasons. Besides Win-
dows the GenWrapper GitBox (which we will simply call
GitBox now) is also supported on Linux and Mac OS X,
some of the stripped down parts were put back and new
BusyBox functionality (e.g. Izma compression) were added
and it was extended with BOINC specific shell commands.

A GenWrapper wrapper legacy application is executed
as follows. The client downloads the Launcher executable
(named like the application as BOINC expects), an appli-
cation zip file and an optional profile script as the BOINC
application and a work unit (input files and a work unit shell
script). The Launcher is started by BOINC and acts as a
BOINC application, handling all communication with the
Core Client. After starting, the Launcher looks for a .zip
file with the same name as itself and extracts all files from
it to the slot directory. Storing application files in a .zip
file is optional, if not found no extracting is performed and
the work unit script should access it by resolving its log-
ical name as any other input files. It is recommended to

use application zip files, because the BOINC server stores
all application files in one common location on the project
web server and when files with the same name, but different
content are required by different applications a conflict may
happen which is prevented by storing application specific
files in a zip archive. The most obvious scenario would be
that different applications require different versions of the
same DLL (Windows shared library) files. These files com-
monly have the same 8 character filename (plus the ”.dll”
extension) regardless of their version. Without packaging
application files together in a zip, a later deployed appli-
cation could overwrite the same named files belonging to
a previously installed application. The application zip file
may also contain a “profile script” which serves as a plat-
form specific bootstrap script for the application (e.g. on
Linux the library include path may need to be adjusted or
local optimization options could be enabled depending on
the presence of optional features, etc.). After unzipping the
application archive, the Launcher generates a starter script
which first sources the profile script if exists and then ex-
ecutes the work unit shell script. Then Launcher calls the
built in POSIX shell interpreter (ash) of GitBox which starts
to execute this generated script.

The Launcher remains running while GitBox executes

the script and handles communication with the Core Client
and performs similar tasks as the BOINC Wrapper. In fact
Launcher was originallty based on BOINC Wrapper, but it
is heavily modified to fit the needs of GenWrapper. Mod-
ifications include: i) suspending and resuming GitBox and
all the subprocesses started by it when the Core Client asks
for this; ii) measuring and reporting the CPU time used by
the running subprocesses and iii) killing the subprocesses
if the requested or the client is stopped. The Launcher is
spawning a new process for GitBox which is also spawning
a new process for each legacy application it is executing.
If the functionality of the original BOINC Wrapper were
used here, only the GitBox process could be controlled and
measured, while loosing control over the legacy application
processes (which do the actual work) and the Core Client
having no information about them. These tasks are imple-
mented differently on UNIX and Windows systems due to
the lack of common API concepts and Windows’ limited
support of POSIX.

On Linux and Mac OS X there are process groups that
the Launcher utilizes by simply putting the spawned GitBox
process in a new process group and by default all its child
processes will also belong to the same group. The limita-
tion here is that no child process should break away from
the process group, thus currently no subshells are supported
(scripts should not create background processes or in prac-
tice & and parenthesizes should be avoided) and also the
legacy applications should avoid create new process groups
(although they can spawn subprocesses which are not break-
ing away from the process group).

On Windows, there are no process groups (a feature with
the same name exists, but it is only vaguely similar to UNIX
process groups and cannot be used the same way). The clos-
est feature the WIN32 API provides is called JobObject.
Each JobObject represents a collection of processes. But the
problem with them is twofold: i) by default a process started
by a process in a JobObject (child) should also belong to the
same JobObject as its parent, but unfortunately it depends
which system function was used to create the child process
(CreateProcess() is fine, but _spawn() is not always), thus
not every child process may end up in the JobObject; ii)
there is no official, documented API function to suspend or
resume a process, only threads can be controlled; if a pro-
cess has more than one thread suspending them in the wrong
order might lead to a dead-lock. This last problem is solved
by using undocumented Windows NTAPI calls that can di-
rectly suspend and resume processes. The first problem was
overcome by periodically checking the list of running pro-
cesses whether there is a new one whose parent process be-
longs to the JobObject but it isn’t. If such processes are
found they are added to the JobObject. There is no function
to suspend or resume all processes in a JobObject, but it is
possible to terminate all processes of it. Thus, if suspend or

resume is requested the JobObject is queried for the list of
its processes and each one of those is handled one by one.

IN=‘boinc resolve_filename in*
OUT=‘boinc resolve_filename out*
NUM=‘cat ${IN}°
PERCENT_PER_ITER=$((10000 / NUM))
for i in ‘seqg SNUM‘; do
PC=$ ((PERCENT_PER_ITER * i /1000))
boinc fraction_done_percent ${PC}
echo —e "I_am_${PC}%_complete._ " >> ${OUT}
sleep 1;
done

Figure 3. Sample GenWrapper work unit shell
script

GitBox (as well as BusyBox) has a modular structure,
which allows to easily extend it with arbitrary commands
by so called “applets”. The BOINC extension is imple-
mented in such an applet and currently consists of the
most important BOINC API calls such as, resolve_filename,
fraction_done, fraction_done_percent. A minimalist sample
work unit script for demonstrating the basic capabilities can
be seen in Figure 3. This sample is reading an (integer)
value from the file with the logical filename ’in’ (by first
resolving the link to the real file), performing a loop which:
i) calculates how much of the total work is done; ii) print
the fraction done in percent into the file with logical name
‘out’ and iii) sleep for a second in each iteration. There is
no need to provide or call boinc_init() or boinc_finish() from
the script itself, because it is called by the Launcher, which
also takes care of forwarding the exit status to boinc_finish
(thus the script can normally exit with a non-zero status to
signal an error). The Launcher also measures used CPU
time and reports to the Core Client automatically. The only
BOINC API functionality required for this simple example
is to resolve logical filenames and report the fraction done
which is also the case for the majority of legacy applica-
tions.

4. GenWrapper in Action

GenWrapper has been used to adapt several legacy ap-
plications to run in a DG environment within the EDGeS
project [2]. The primary goal of the EDGeS project is to
build technological bridges to facilitate service and desktop
grid interoperability, but the deployment of the developed
technologies in a production environment and porting ap-
plications to run on the integrated SG—DG environment is
also an important part of the project. Hence, the deployed
applications are required to run on EGEE [4], BOINC and
XtremWeb [5] and need to be adapted for all three plat-

forms. This can be achieved by modifying applications or
developing application specific wrappers. Application spe-
cific wrappers are turned out to be often necessary because
legacy codes are written in a diverse set of languages (e.g.
one of them uses the R statistical language), often require
application specific setup and/or processing of input and
output files (e.g. archive creation, compression or platform
specific setup at runtime), and so on. By using GenWrap-
per the required time and effort to deploy these applications
became significantly less by allowing to adapt the applica-
tions to BOINC without changing their code and avoiding
reimplementing the same functionality over and over in ap-
plication specific wrappers.

The aims of the CancerGrid project[6] are to develop fo-
cused molecule libraries with a high content of anticancer
leads and to build models for predicting various properties
for the molecules. Processing of the molecules is automated
by different computer algorithms (also called in silico drug
design). These algorithms are implemented by existing
legacy applications that are to be run on a DG system. They
must be executed in a strict order to produce the desired out-
put therefore workflows have been designed for each proce-
dure such as, molecule descriptor calculation, model build-
ing and property prediction. The most computationally in-
tensive workflow is the descriptor calculation. This work-
flow contains 4 jobs which perform molecular calculations,
2 jobs converting file formats and 3 database manipulator
jobs. The workflow has two parameters: N represents the
number of two dimensional input molecules, M represents
the number of conformers (variants of a molecule) that are
generated in a session. The molecular calculation jobs are
thus executed by a large number of times: once for each in-
put or once for each conformer of each input molecule (N
or N x M). The typical value for N is 30, 000 and for M is
100 thus, the workflow generates 3,000, 000 instances for
each job and altogether almost 10 million jobs are gener-
ated during the execution of the workflow. The granularity
of the workflow is however very fine grained, the typical
running time of one instance is a few minutes, so they are
not suitable for conversion to BOINC work units one to one.

To optimize the number of work units generated from a
workflow, we introduced a job database, job queues and a
Queue Manager extension at the BOINC server. The job
database stores the incoming jobs generated from differ-
ent workflow instances into separate queues belonging to
the different algorithms. Once a queue contains appropri-
ate number of jobs, the Queue Manager generates a single
BOINC work unit out of a batch of jobs and places it into
the BOINC database using DC-API[3]. It also generates
a shell script to manage the execution of the batch on the
client processing the work unit which is executed by Gen-
Wrapper. The batch script is generated by concatenating
predefined head, body and tail script fragments which han-

BASEDIR=‘pwd®
gzip —cd ‘boinc resolve_filename %{inputs}‘ \
| tar xvf —
exec 3<&2
exec 2>"$BASEDIR"/%{output_dir }/gridnfo.log
touch "$BASEDIR"/%{output_dir }/gridnfo.log
WORKFILE_PREFIX="WORKFILE"
MODEL_TYPE="Multilinear Regression"
cd "$BASEDIR"/%{input_dir}
mv IN—PARAMS IN—PARAMS.ori
echo "EXE_DIRECTORY, _=_$BASEDIR" >IN—PARAMS
echo "WORKFILE_PREFIX = SWORKFILE_PREFIX" \
>>IN—-PARAMS
echo "MODEL_TYPE_=_S$MODEL_TYPE" >>IN—-PARAMS
cat IN-PARAMS.ori | grep —v "EXE_DIRECTORY" \
| grep —v "WORKFILE_PREFIX" \
| grep —v "MODEL_TYPE" >>IN—PARAMS
rm IN—-PARAMS.ori
mv IN-MATRIX S$SWORKFILE_PREFIX.mt
export LD_LIBRARY_PATH="$BASEDIR"
"SBASEDIR"/mda —p IN—PARAMS —r
mv SWORKFILE_PREFIX.mt IN-MATRIX
mv SWORKFILE_PREFIX.stdout \
"SBASEDIR/%{output_dir}/stdout.log"
mv SWORKFILE_PREFIX.stderr \
"SBASEDIR/%{output_dir}/stderr.log"
mv SWORKFILE_PREFIX.model \
"SBASEDIR/%{output_dir}/OUT-MODEL"
exec 2<&3
exec 3>&—
cd "$BASEDIR"
for i in ‘find %{output_pattern} \
—name gridnfo.log‘; do
cat $i
done 1>&2
tar cf — %{output_pattern} | \
gzip >‘boinc resolve_filename %{outputs}*

Figure 4. A typical CancerGrid work unit shell
script

dle preparing inputs (i.e. getting the appropriate part from
the batch), running the computation, and putting the out-
puts back in the batch output respectively. These scripts
can contain macros denoted by ${name} which are sub-
stituted by the Queue Manager when generating the batch
scripts. Macros are used to denote the intended location
and name of input and output files which should be followed
for batch execution to work. Besides supporting batch ex-
ecution GenWrapper is also used to execute an application
specific script (embedded in the batch body script fragment)
which handles file manipulation/renaming needed to run the
legacy application. This is required because some legacy
codes require the files to be named according to an identi-
fier which is only determined during execution of the work
unit and not known at the time of its creation. Also some of
the calculations generate an unknown number of output files
which is handled by putting them in a compressed archive

created by GenWrapper after the legacy application is fin-
ished.

The flexibility provided by GenWrapper was used fully
to adapt the legacy applications without modifying their
code and to handle the above mentioned issues with only
writing relatively simple shell scripts (see Figure 4), which
made it easy to support the advanced scenario described
above.

5. Conclusion

GenWrapper offers a generic solution for wrapping and
executing an arbitrary set of legacy applications in a BOINC
infrastructure. The main strength of it is the POSIX like
shell scripting environment which is used to describe how
the application is to be run and how the work unit should
be processed. This provides great flexibility and a powerful
tool to port legacy applications to Desktop Grids with very
little effort.

GenWrapper is based on GitBox which is a stripped
down version of BusyBox that was ported to run on Win-
dows. We ported GitBox back to UNIX (Linux and Mac
OS X) and extended it with BOINC specific commands
and a Launcher component that handles starting GitBox and
communicating with the Core Client such as reporting CPU
time and handling Suspend/Resume requests, much like the
BOINC Wrapper does. Currently the GitBox and Launcher
components of GenWrapper are two separate executables,
each about 400 kiB size but we plan to integrate the two in a
single executable which will probably make it even smaller.

GenWrapper has been used to adapt several legacy ap-
plications to DGs. It was used by the CancerGrid project
which is utilizing DGs for drug development. In this project
computationally intensive workflows consisting of many
jobs were created which required running legacy applica-
tions on a DG system. Porting these applications would
have require much effort, and the functionality of the origi-
nal BOINC wrapper could not be used to do it (some legacy
codes produce variable number of output files that cannot
be predicted before running them, some need special prepa-
rations before execution, most of the files are text files that
need to be decompressed/compressed before and after pro-
cessing, etc.). GenWrapper is also used by the EDGeS[2]
project which is building technological bridges to facilitate
service and desktop grid interoperability and porting ap-
plications to run on this integrated environment. The de-
ployed applications are required to run on EGEE, BOINC
and XtremWeb. By using GenWrapper the required time
and effort to deploy these applications became significantly
lower and the flexibility allowed by POSIX scripting helped
to support complex cases as in CancerGrid easily.

All parts of GenWrapper are open source and are avail-
able for download upon request.

6. Acknowledgements

The results presented in this paper are realized with
the support of the Enabling Desktop Grids for e-Science
(EDGeS) project, (co-founded by the European Commis-
sion under contract number RI-211727) and by the Cancer-
Grid project (co-founded by the European Commission un-
der contract number 037559).

References

[1] D. P. Anderson. BOINC: A system for public-resource com-
puting and storage. In Proc. of 5th IEEE/ACM International
Workshop on Grid Computing, Pittsburgh, USA, November
2004.

[2] Z.Balaton, Z. Farkas, G. Gombas, P. Kacsuk, R. Lovas, A. C.
Marosi, A. Emmen, G. Terstyanszky, T. Kiss, 1. Kelley, 1. Tay-
lor, O. Lodygensky, M. Cardenas-Montes, G. Fedak, and
F. Araujo. EDGeS: The common boundary between service
and desktop grids. Parallel Processing Letters, 18(3):433—
445, September 2008.

[3] Z. Balaton, G. Gombds, P. Kacsuk, A. Kornafeld, J. Kovécs,
A. C. Marosi, G. Vida, N. Podhorszki, and T. Kiss. SZTAKI
Desktop Grid: a modular and scalable way of building large
computing grids. In Proc. of the 1st Workshop on Desktop
Grids and Volunteer Computing Systems in conjunction with
IPDPS’07, Long Beach, CA, USA, March 2007. IEEE.

[4] EGEE Enabling Grids for E-SciencE. http://www.
eu-egee.org.

[5] G. Fedak, C. Germain, V. Néri, and F. Cappello. Xtremweb:
A generic global computing system. In Proc. of CC-
GRID2001 Workshop on Global Computing on Personal De-
vices. IEEE Press, May 2001.

[6] P. Kacsuk, K. Karéczkai, G. Hermann, G. Sipos, and
J. Kovacs. WS-PGRADE: Supporting parameter sweep appli-
cations in workflows. In Proc. of 3rd Workshop on Workflows
in Support of Large-Scale Science in conjunction with SC’08,
Austin, TX, USA, November 2008.

[7] A.C. Marosi, G. Gombads, Z. Balaton, P. Kacsuk, and T. Kiss.
SZTAKI Desktop Grid: Building a scalable, secure platform
for desktop grid computing. In Making Grids Work, pages
363-374. Springer Publishing Company, Incorporated, July
2008.

[8] B. Perens and al. Busybox: The swiss army knife of embed-
ded linux. http://www.busybox.net.

[9] L. Torvalds and al. Git: Fast version control system. http:
//git.or.cz/.

